윤 재호
2021-07-20
## V1 V2
## 1 115.22 3.69
## 2 135.98 4.39
## 3 119.34 4.75
## 4 114.96 6.03
## 5 187.05 12.47
## 6 243.92 12.98
## V1 V2
## Min. :109.7 Min. : 3.69
## 1st Qu.:200.4 1st Qu.:17.11
## Median :264.5 Median :20.03
## Mean :283.6 Mean :19.60
## 3rd Qu.:363.3 3rd Qu.:24.40
## Max. :587.7 Max. :33.40
\[ Y_{i} = \alpha + \beta X_{i} + e_{i} \]
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -223.025 -50.816 -6.324 67.879 212.044
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.416 43.410 1.922 0.0622 .
## x 10.210 2.093 4.877 1.95e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 89.52 on 38 degrees of freedom
## Multiple R-squared: 0.385, Adjusted R-squared: 0.3688
## F-statistic: 23.79 on 1 and 38 DF, p-value: 1.946e-05
## [1] 83.416
## [1] 10.20964
matplot(y2, type='l', col=1:40,
xlab='Income', ylab='Food Expenditure',
main ='Food Expenditure vs. Prediction ')
b1 <- coef(reg)[[1]]
b2 <- coef(reg)[[2]]
yy <- data.frame()
trial <- 1
trials <- 1000
while(trial <= trials) {
y3 <- b1+b2*x+rnorm(N, mean=0, sd=sde)
yy <- rbind(yy, t(y3))
trial <- trial + 1
}
matplot(t(yy), type='l', col=1:40,
xlab='Income', ylab='Food Expenditure',
main ='Prediction N=1000 ')
sink(‘ch4.out’)
## [1] -51.20898 -20.43183 12.43865 17.46351 460.62604 54.10621 154.69972
## [8] 206.58075 280.83184 64.46904 218.57039 310.49707 262.49777 272.45277
## [15] 215.89734 234.98174 237.78571 275.38732 333.07630 266.77325 324.91252
## [22] 243.95799 345.17388 270.86235 328.84266 490.64543 202.05131 226.63993
## [29] 502.94529 283.55355 318.18870 157.14806 286.38909 283.92843 373.02637
## [36] 366.09577 380.04090 344.57782 230.02346 365.05559
sink()