2 모형
\[ Y_{i} = \alpha + \beta X_{i} + e_{i} \]
2.1 모형 가정
\[ The \ variable \ e_{i} \ is \ random \ (= stochastic) \\ E(e_{i}) = 0, \ \ var(e_{i}^2) = \sigma^2, \ \ cov(e_{j},e_{k}) =0 \\ The \ variable \ X_{i} \ is \ not \ random \ (= nonstochastic) \\ E(X_{i} \ e_{i}) = 0 \\ e_{i} \sim N(0,\sigma^2) \\ \]
2.2 변수
= food[,2] # Income
x = food[,1] # Food Expenditure y
2.3 추정
<- lm(y ~ x) reg
2.4 추정 결과
summary(reg)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -223.025 -50.816 -6.324 67.879 212.044
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 83.416 43.410 1.922 0.0622 .
## x 10.210 2.093 4.877 1.95e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 89.52 on 38 degrees of freedom
## Multiple R-squared: 0.385, Adjusted R-squared: 0.3688
## F-statistic: 23.79 on 1 and 38 DF, p-value: 1.946e-05
2.5 b1, b2
<- coef(reg)[[1]]
b1 <- coef(reg)[[2]]
b2
b1
## [1] 83.416
b2
## [1] 10.20964